An explicit solution of a non-linear quadratic constrained stochastic control problem with an application to optimal liquidation in dark pools with adverse selection∗
نویسنده
چکیده
We study a constrained stochastic control problem with jumps; the jump times of the controlled process are given by a Poisson process. The cost functional comprises quadratic components for an absolutely continuous control and the controlled process and an absolute value component for the control of the jump size of the process. We characterize the value function by a “polynomial” of degree two whose coefficients depend on the state of the system; these coefficients are given by a coupled system of ODEs. The problem hence reduces from solving the Hamilton Jacobi Bellman (HJB) equation (i.e., a PDE) to solving an ODE whose solution is available in closed form. The state space is separated by a time dependent boundary into a continuation region where the optimal jump size of the controlled process is positive and a stopping region where it is zero. We apply the optimization problem to a problem faced by investors in the financial market who have to liquidate a position in a risky asset and have access to a dark pool with adverse selection.
منابع مشابه
The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملOptimal Solution in a Constrained Distribution System
We develop a method to obtain an optimal solution for a constrained distribution system with several items and multi-retailers. The objective is to determine the procurement frequency as well as the joint shipment interval for each retailer in order to minimize the total costs. The proposed method is applicable to both nested and non-nested policies and ends up with an optimal solution. To solv...
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملNon-linear stochastic inversion of regional Bouguer anomalies by means of Particle Swarm Optimization: Application to the Zagros Mountains
Estimating the lateral depth variations of the Earth’s crust from gravity data is a non-linear ill-posed problem. The ill-posedness of the problem is due to the presence of noise in the data, and also the non-uniqueness of the problem. Particle Swarm Optimization (PSO) is a stochastic population-based optimizer, originally inspired by the social behavior of fish schools and bird flocks. PSO is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013